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Abstract. The asymmetric simple-exclusion model on two-crossing one-dimensional lattices is 
considered for studying shock formation and traffic jam induced by a crossing. The condition for 
shock fonnation is derived for car densities p~ and m of the Krst and second street. The phase 
diagram and the dependence of the t&ic current on the car densities are shown. We compare the 
present result with that of a car accident. Also. we investigate the shock formation induced by both 
a crossing and a car accident. It is found that the dynamical transitions occur successively with 
increasing car density. The phase d i a g m  is shown. 

1. Introduction 

The one-dimensional (ID) exclusion model is one of the simplest examples of a driven 
system [l, 21, Themodel has been extensively studied for understanding systems of interacting 
particles [3,4]. The ID exclusion models are used to study the microscopic structure of 
shocks (561 and are closely linked to growth processes [7-91. The ID asymmetric simple- 
exclusion model can be formulated as traffic jam problems. 

Traffic simulations 
based on various hydrodynamic models have provided much insight [IO, 111. However, the 
simulation of traffic flow is a formidable task since it involves many degrees of freedom. 
Cellular automaton (CA) models are being applied successfully to simulations of complex 
physical systems [12,13]. ~ Very recently, Biham et al [14] applied the two-dimensional 
asymmetric exclusion model to the traffic-jam problem. They found that a dynamical 
jamming transition between the low-density moving phase and the high-density jamming 
phase occurs at a critical density of cars. Also, in order to simulate freeway traffic, Nagel 
and Schreckenberg 1151 extended the ID asymmetric exclusion model to take into account car 
velocity. They showed that a transition from laminar traffic flow to start-stop waves occurs 
with increasing car density as is observed in real freeway traffic. 

In real traffic-flow systems, the traffic jam is frequently induced by a single crossing when a 
street (first street) crosses with another street (second street). Thecongested street prevents cars 
from crossing its street. As soon as a single street begins to be congested, a traffic jam spreads 
from the crossing throughout another street. The occurence of a traffic jam on the first street 
strongly depends on whether or not the second street (crossing with the first street) becomes 
congested. The traffic jam appears as a shock (a discontinuity of densities) which separates 
between the low-density and the high-density traffic flow. The mechanism of shock formation 
in the 1D asymmetric simple-exclusion model was examined by Janowsky and Lebowitz [5]. 
They studied a shock smcture when the translation invariance is broken by the insertion of a 
blockage. The model corresponds to the traffic-jam problem induced by a car accident. The 
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Recently. traffic problem have attracted considerable attention. 



6626 T Nagatani 

mechanism of shock formation induced by the car accident will be different from that induced 
by the crossing. However, the shock formation and the traffic jam induced by a crossing have 
not been studied until now. 

In this paper, we present the extended verision of the ID asymmehic simple-exclusion 
model in which two one-dimensional lattices cross one another. We investigate the shock 
formationandtrafficjaminduced by acrossing. We find thephasediagram for shockformation 
against the car densities. We show the dependence of t r d c  current on the car densities. We 
compare our result with that of Janowsky and Lebowitz [5] .  We find that the shock formation 
induced by a crossing is different from that of a car accident. Furthermore, we study the 
combined effect of both crossing and car accident on shock formation and traffic jam. 

The organization of the paper is as follows. In section 2, we present our model. The traffic 
current and the phase diagram for shock formation are derived. The result is compared with 
that of Janowsky and Lebowitz. In section 3, we study the shock formation process induced 
by both crossing and car accident. We show the phase diagram for shock formation. Section 4 
contains a brief summary. 

2. Model and simulation result 

Our model is defined on two one-dimensional lattices in which each lattice consists of L sites 
with periodic boundary conditions and the first lattice crosses with the second. Each site is 
either occupied by one car or is empty. Figure 1 shows the schematic representation of our 
model. The arrow pointing up (right) represents the car moving up (right). For an arbitrary 
configuration, one update of the system consists of the two steps. The first step is performed 
in parallel for all the cars on the first street (lattice) and the second step is performed in parallel 
for all the cars on the second street (lattice). The move or stop of cars in each step is the same 
as the 1D asymmeIric simple-exclusion model. In each lattice, each arrow moves forward one 
step unless the forward nearest-neighbour site is occupied by another arrow. If an arrow is 
blocked ahead by another arrow, it does not move cven if the blocking arrow moves out of 
the site during the same time step. In this model, the total number of cars on each street is 
conserved. The traffic problem on two streets connected by a crossing is reduced to its simplest 
form. The essential features are maintained. These features include the simultaneous flow of 
cars on two streets which cannot overlap and a car on the first (second) street at the crossing 
prevents cars on the second (first) street from going ahead. In the limit of no cars on the first 
or second street, our model reproduces the ID asymmetric simple-exclusion model. 

We have performed simulations of the CA model starting with an ensemble of random 
initial conditions where the system size L = 2000, and the initial densities of cars on the first 
and second streets are p1 = 0.0-1.0 and pz  = 0.0-1.0. Each run is calculated up to 10000 
time steps. The data are averaged over 50 runs. We present the simulation result obtained by 
the procedure explained above. We consider the traffic flow under the condition of a constant 
car density p~ on the second street. Figure 2 shows the plot of the mean traffic-current J1 on 
the first street against the car density p i  on the first street for p z  < 0.5 (circles), pz  = 0.65 
(triangles) andpz = 0.8 (squares). Themeancurrent J isobtained byaveragingover5000time 
steps except for the initial stage. For density pz  lower than 0.5, the traffic flow of the second 
street does not affect the traffic current 51 on the first street. The traffic current JI  agrees with 
that of the 1D asymmetric exclusion model. Traffic flow on the first street is independent of that 
on the second street. For pz = 0.65, the traffic current 51 becomes saturated at the car density 
pi = 0.35 f 0.01, remains at the constant value J I  = 0.35 4 0.01 until p1 = 0.66 i 0.01 
and then decreases linearly with p1. Similarly, for pz = 0.8, the traffic current J I  becomes 
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Fig& 1. The schematic representation of 
tr&c flow on two crossing streets. The mow 
poiniing up (right) represenu the car moving 
np(right). Acaronthefirst(second)streetat 
the crossing prevents cars on the second (first) 
sheet from going ahead. 

Figum2. TheplotofthemeanVaffic-current Jl on 
the first sheet against the car density p~ on the first 
street for p2 < 0.5 (circles), pz = 0.65 (triangles) 
and pz = 0.8 (squares). 

saturated at the density pl  = 0.2 =! 0.01, remains at the constant value JI = 0.2 + 0.01 until 
PI = 0.81 =k 0.01 and then decreases linearly with PI. The saturation of traffic current 31 is 
due to the shock formation on the first street. The shock is a discontinuity of density which 
separates between the low density pl,lmV and the high density pl.high. For illustration, figure 3 
shows the typical configuration of cars up to 500 time steps for p1 = 0.5 and pz  = 0.8 where 
the system size L = 190. The upper and lower configurations represent respectively those on 
the second and fist streets. The vertical direction indicates that ofmoving cars. Thehorizontal 
directionindicatesthatoftime. Acarisiridicated byadot. Thetrajectoryof acarisrepresented 
by a line. The crossing is on the tops of the first and second streets. The shock (discontinuity 
of densities) is positioned near the centre of the first street. Figure 4 shows the density profiles 
pl(x) and p z ( x )  of the first and second streets against the distance x for the initial densities 
p1 = 0.5 and pz  = 0.8 where the system size L = 2000 and the density is averaged over 5000 
time steps. The shock appears at x = 1,050 on the first street. The shock separates between the 
low density pl,low = 0.2 f 0.01 and the high density &high = 0.8 f 0.01. The high density 
Pl.high agrees with the density p z  of the second street. When the shock formation occurs, 
the high density PI,!,&, of the shock is determined by the density p z .  We find the following 
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A t  
Figure 3. The typical configuration of urs up to 500 time steps for P I  = 0.5 and p2 = 0.8 where 
the system size L = 190. The upper and lower configurations represent. respectively, those on 
the second and first sheels. The crossing is on the tops of the first and second streets. The upper 
directionindicatesthatof moving can. The right direction indicntes that oftime. Acaris indicated 
by a dot. The trajectory of 3. car is represented by a line, A shock (discontinuity of densities) 
appears near the centre of the first street 

1 ,  

...................................... 
: pl,high*.8 

PI 

0 . 5 1  , , ,~ I I , .:PI ..& ,, 
.................... 

Pl.law=O.2 crossing 

0 
loo0 2000 

X 
0 

Figure 4. The density profiles PI ( x )  and p z ( x )  ofthe first and second streets against the distance 
x for the densities pj = 0.5 and p2 = 0.8 where lhe system size L = 2 0 0  and the density is 
averaged over 5000 time steps, The crossing is positioned at x = 2000. The shock appears at 
x = 1050 on the first street. The shock separates between the low density pl,law = O R &  0.01 and 
the high density pl,hjeb = O . % i  0.01. The high density pl,hjgh agrees with the density p1 of the 
second sheet. 

relationships between the low and high densities: 

Pl,bi&h = P2 and PI,IOW + pl.high = 1. (1)  

The second equality can be derived from the conservation law of traffic current after and before 
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n I \ FigureS. Thephasediagrambetweenpl andpz. The 
region in which ashock appears on the first (second) 
street is indicated by 'shock 1' (shock 2). 
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the shock on the first street. The mean velocity (U) in the 1D asymmetric exclusion model is 
given by (U) = 1 for p < 0.5 and (U) =. (1 - p)/p for p z 0.5. The conservation law of 
current after and beforetheshock isgiven by ~ I , I ~ ~ ( u ~ . I ~ ~ )  = pl.high(Ul.high) where (UI.I~,.,) and 
( q h j g h )  are the mean velocities before and after the shock. They are given by (ul.lOw) = 1 and 
(U1,high) = (1 - Pl,higb)/Pl,high. Therefore, the relationship (1) is satisfied. The shock appears 
when the density p2 > 0.5. The shock front shifts backward with the initial density PI .  The 
position x , / L  of the shock is determined by the initial density pl. It is given by 

X s / L  = (Pl,high - PI)/(Pl,high -Pl.low) ~ for PI 2 Pl. law.  (2) 

Figure 5 shows the phase diagram between p1 and p2. The shock does not appear under the 
following condition: 

A shock appears only on the first street under the condition 

P I > ~ - P Z  and P I < P ~ .  (4) 

The densities pl,high and pl.low in the front and back of the shock are given by (1). The shock 
position is given by (Z).~ A shock appears only on the second street under the condition 

P I  > 1 -pz and P I  =- PZ.  (5)  

The densities P2,high and p~,low in the front and backof theshock are givenby the same equation 
as (1) where the subscript 1 (2)  is replaced by 2 (1). The shock position is also given by the 
same as (2) where the subscript 1 is replaced by 2. Shock appears on the street with lower car 
density. Shocks never appear simultaneously on both streets; 

We compare our result with that of a car accident. Janowsky and Lebowitz investigated the 
shock formation induced by a car accident in the 1D asymmetric simple-exclusion model 151. 
They showed the mechanism of shock formation when the translation invariance is broken by 
the insertion of a blockage: this reduces the rates at which particles jump across the bond by a 
factor r (0 < r < 1). Then, shock formation occurs when the following condition is satisfied 

. 
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Ficure 6. The plot of tmEc currents JI (squares) 

" 0  0.5 1 and Jz (circles) againsr the car densiry p~ on the first 
P1 m e t  for p z  = 0.4 and 11 = 0.35. 

where p is the car density and r is the rate representing the degree of blocking. The shock 
separates the low density plow from the high density phigh. The densities plow and Phigh are 
given by 

plow = r/ (r  + 1) and Phigh = I/@ + 1). (7) 

The condition (6) of shock formation induced by a blockage is definitely different from 
equation (4) and (5) of shock formation induced by a crossing. The densities phi& and plow of 
(7) in the front and back of the shock are also different from (1) by a crossing. 

Our model is fully deterministic since updating is performed in parallel. Even if updating 
is performed on a randomly chosen site, the results are the same. 

3. Combined effect of both crossing and car accident 

We consider shock formation and traffic jam induced by both the crossing and the car accident. 
Wederivethephasediagramforshockformationandtrafficjam. Weassume thatacaraccident 
occurs at a position x, on the first street. The distance x, is measured from the position at 
which cars pass just the crossing: x = 0 and x = L are positioned just after and just before the 
crossing. When a car flows through the car accident, it passes with probability rl or it stops 
with probability 1 - T I .  The blockage of the car accident reduces the rate at which cars move 
across the position of car accident by a factor rl (0 < ri < 1). We study the combined effect 
of both crossing and car accident on the shock formation and traffic jam. We put the blockage 
by car accident on the position x, = L / 2  on the first street. We calculate the traffic currents 
51 and 52 on the first and second streets. Figure 6 shows the plot of traffic currents J1 and JZ 
against the car density p1 on the first street for p2 = 0.4 and rl = 0.35 where the system size 
L = 2000 and the currents are averaged over 5000 time steps. Cars on the first and second 
streetS move at the maximum velocity U,, = 1.0 until p ,  = 0.26 f 0.02. The traffic current 
51 is proportional to~the car density p1 on the first street. The traffic flow on the first street is 
not affected by that on the second street and the car accident on the first street. At density PI 
higher than 0.26, a shock induced by the car accident appears on the first street It propagates 
from the car accident throughout space with increasing p1. The traffic current J1 on the first 
street becomes saturated and J I  = 0.26 i 0.02 when the shock on the first street is formed. 
When PI becomes 0.5, the shock reaches the crossing. Then, the car density at the crossing 
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becomes Phi& (5 0.5). A new shock appears, on the second street. Two shocks induced by 
the car accident and the crossing occur respectively on the first and second streets. The traffic 
current JZ on the second street decreases sharply at PI = 0.5. Both traffic currents J 1  and Jz 
become the constant value JI = JZ = 0.26 f 0.02 until p1 = 0.74 f 0.02. When the car 
density PI becomes larger than 0.74, the shock on the first street disappears. Only the shock 
on the second street appears. We find the following: 

J1 = p 1  and JZ = 0.4 for 0 < p~ < 0.26 @hase 1) 

J I  = 0.26 and Jz = 0.4 for 0.26 e PI < 0.5 (phase 2) 

J I  = JZ = 0.26 for 0.5 < p1 < 0.74 (phase 3) 

J - 1 = JZ = 1 - p 

The dynamical phase transitions occur successively from thephase 1 (where thecars move with 
the maximum velocity), through phases 2 (the shock induced by the car accident appears on the 
first street) and 3 (two shocks induced by the car accident and the crossing appear respectively 
on the first and second streets), to phase 5 (a shock induced by the crossing appears only on the 
second street). Since the shock on the first street is induced by the car accident, the densities 
P i & ,  and pl,iOw in the front and back of shock on the first street'are given by (7): 

(8) 

for 0.74 < PI e 1 ' (phase5). 

Pi.high = I/(ri  + 1) = 0.74 and pl,im = ~ r ~ / ( r ~  + 1) = 0.26 (9) 

where r ]  = 0.35. Since the shock on the second street is induced by the crossing, the densities 
PZ.higb and 

P2,high = P1,high = 0.74 

in the front and back of shock on the second street are given by (1): 

and p2,iOw = 1 - p2,hinh = 0.26 

for 0.5 < p I  < 0.74 (10) 

PZ.bigh = p1 and pz.low = 1 - p for 0.74 < - P I  < 1 .  

For illustration, figure 7 shows the typical configurations of cars up to 500 time steps for 
p i  = 0.7, p z  = 0.4 and rl = 0.35 where L = 190. The upper and lower Configurations 
represent respectively those on the second and first streets. The upper direction indicates 
that of moving cars. The fight direction indicates that of time. A car is indicated by a dot. 
The trajectory of a car is represented by a line. The crossing is on the tops of the first and 
second streets. The car accident is positioned at the centre of the first street. The shocks 
(discontinuities of densities) appear on the first and second streets. 

We calculate traffic currents in the case of higher car density p z .  Figure 8 shows the plot 
of aaKic currents J1 and 52 against the car density p1 on the first street for p2 = 0.85 and 
rl = 0.35 where the system size L = 2000 and the currents are averaged over 5000 time 
steps. Cars on the first and second streets move at the maximal velocity U,, = 1.0 until 
p I  = 0.15 f 0.02. The traflic current J I  is proportional to the car density p I  on the first street. 

The traffic flow on the first street is not affected by that on the second street and the car 
accident on the first street. At density p, higher than 0.15, a shock induced by the crossing 
appears on the first street. It propagates from the crossing throughout space with increasing p, . 
Thetrafficcurrent JI onthefirststreetbecomessaturatedandequals 52 ( J I  = 52 = 0.15iO.02) 
when the shock on the first street is formed. In this case of higher density pz. the shock on the 
first sfreet is induced by the crossing. In the previous case of lower density pz, the shock on 
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Figure 7. The typical configurations of cars up to 500 time steps for p~ = 0.7, pi = 0.4 and 
11 = 0.35 where L = 190. The upper and lower wnfipmions represent respectively those on 
the second and fiqt sueers. The upper direction indicztes thm of moving cars. The right dire&an 
indicates that of time. The crossing is on the tops of the first and second streets. The car accident 
is oositioned the centre of the fim street. The shocks (diswntinuities of densities) appear on the 

Fiigure 8. The plot of traffic currents 31 (squares) 

first and second streets 

OS I 'I 0.25 

:II 
* :Jz 

. . . . . . . . . . . . . . . . . . . . . I!, , , , , , , *=> . . 
n 

JI  = J z  = 0.15 for 0.15 < pl < 0.85 (phase 4) 

J I  = JZ = 1 - PI for 0.85 < p1 1 (phase 5). 
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FigureL Thephasediagrambetweenpl andpa. Six 
dynamicalphases I4appear. Eachphaseisindicated 
by number. 

The dynamical phase transitions occur successively from phase 1 (where the cars move with 
the maximum velocity), through phase4(the shock induced by the crossing appears on the first 
skeet), to phase 5 ( the shock induced by the crossing appears only on the second street). In 
this case of higher density pz,  the shock formation is not induced by the car accident but by the 
crossing. The dynamical phase transitions donot depend on the car accident. The transitions 
agree with those by the crossing explained in section 2. We calculate traffic flow for various 
values of p z .  We find the phase diagram for the shock formation process. Figure 9 shows the 
phase diagram between p1 and p z .  Six dynamical phases 1-6 appear. Each phase is indicated 
by a number. The shock does not appear in phases 1 and 6. In phase 2, a shock induced by the 
car accident appears on the first street. In phase 3, a shock induced by the car accident appears 
on the first street and a shock induced by the crossing appears on the second skeet. In phase 4, 
a shock induced by the crossing appears on the first street. In phase 5,  a shock induced by the 
crossing appears on the second street. The regions of each phase are divided by the following: 

phase 1 for 0 < PI < r l / ( l +  r1) and P I  < 1 - PZ 

phase 2 for 

phase 3 for 

phase 4 for 1 - p z  < p1 < pz  and I - r 1 / ( l + r d < p 2 < 1  

phase 5 for 

phase 6 for 

The densities before and after the shock induced by the crossing are obtained by (1). The 
densities before and after the shock induced by the car accident are given by (7). 

r l / ( l+  rl) < p1 < 1 - x J L  

1 - x,, / L  < p1 < 1/(1+ r l )  

and 

and 

0 < pz < 1 - r l / ( l+  r1) 

0 < pz < 1 - r l / ( l+  r l )  
(12) 

PI > 1 - p z ,  p1 > p~ 

1/(1 + rI) < PI < 1 - pz  . 
and p1 > 1/(1+ r l )  

4. Summary 

We presented the extended version of the ID asymmetric simple-exclusion model to investigate 
shock formation and traffic jam induced by a crossing. The extended model consists of two- 
crossing one-dimensional lattices. We calculated the traffic current on the system. We derived 
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the condition of shock formation and showed the phase diagram. Also, we investigated 
the combined effect of crossing and car accident on shock formation. We showed that the 
dynamical phase bansitions occur successively with increasing car density. We found the 
phase diagram. 
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